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1. Introduction

String theory might provide a framework to describe all particle physics phenomena. Still

we do not know how to derive the standard model of strong and electro-weak interactions

from first principles. Apparently many roads seem to be possible: the so-called landscape

of string vacua. Progress might be made by exploring this landscape in detail to understand

possible phenomenological patterns that might be mapped to experimental observations.

Such patterns might include concepts like supersymmetry, grand unification and extra

dimensions.

In the present paper we would like to explore the heterotic SO(32) string theory and

its suitability for model building. There has been less effort spent on the SO(32) theory

than its E8 ×E′
8 brother, which was considered as the prime candidate initially. A detailed

analysis of the SO(32) theory shows, however, that model building within this framework

could be as exciting as in the E8 × E′
8 case.

An additional motivation to consider the SO(32) heterotic theory is the exploration of

the conjectured duality to the SO(32) type I string theory [1]. This might prove useful to

understand connections between heterotic model constructions and those based on type II

orientifolds.
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Our analysis considers the orbifold compactification[2] of the SO(32) heterotic theory,1

as it combines the complexity of Calabi-Yau compactification with the calculability of torus

compactification. Many phenomenological properties find a geometric explanation in this

framework [5 – 7]. We derive a complete classification of the four-dimensional heterotic

SO(32) orbifold constructions. This is necessary as previous attempts to do so have been

found to be incomplete. We explain the subtleties of the construction and give a detailed

presentation of the Z4-orbifold. The remaining cases are given in detail on a web page [8]

that will be made available to the public.

Having achieved this goal of classification we explore properties that might be impor-

tant for explicit model building. One aspect e.g. is the question of the appearance of spinor

representations of SO(2n) gauge groups (with n = 5, 6, 7). Spinors of SO(10) [9, 10] e.g.

would be very suitable for a description of families of quarks and leptons, as argued in

ref. [11]. In addition, the appearance of these spinors might be relevant to understand the

nature of the heterotic-type I duality in four space time dimensions [12 – 15].

Using this information we provide a few explicit examples of 3-family models in this

framework to illustrate the ease with which such models can be constructed. One example

is obtained even in the absence of Wilson lines. Our results can be used as a starting point

for a full classification of models including Wilson lines, the inclusion of which is, however,

beyond the scope of this paper. Nonetheless, some useful patterns of possible spectra can

be deduced from our results with the concept of fixed-point equivalent models [16]. It thus

appears that the heterotic SO(32) theory is a fertile part of the string theory landscape.

The paper is organized as follows. In section 2.1 we present the strategy to classify all

orbifolds of the SO(32) heterotic string. In section 2.2 and 2.3 we illustrate the method

for the Z4 orbifold explicitly and give the list of models for the ZN orbifolds. Section

3 is devoted to the discussion of the spinorial representations of SO(2n) gauge groups

for various n. Two explicit examples of 3-family models will be presented in section 4,

followed by concluding remarks in section 5. Some technical details and tables are given

in the appendices.

2. Classification of orbifolds

2.1 Classification of SO(32) orbifold models

To introduce the relevant notation [17, 5] and to set the stage for the following calculations,

we briefly summarize some of the concepts in orbifold constructions, before proceeding to

describe the classification of inequivalent models.

An orbifold is defined to be the quotient of a torus2 by a discrete set of its isometries,

called the point group P . Modular invariance requires the action of the point group to be

accompanied by a corresponding action G (gauge twisting group) on the 16 gauge degrees

of freedom:

O = T 6
/

P ⊗ T 16
/

G . (2.1)

1For earlier work on SO(32) heterotic string orbifolds, see ref. [3, 4].
2In a more general context, an orbifold is defined to be the quotient of a manifold by a discrete symmetry.
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Figure 1: Extended Dynkin diagram of SO(32) and the associated Kač labels.

Modular invariance and the homomorphism property of the gauge embedding P ↪→ G put

further restrictions on G, which will be discussed later. Consistency with ten-dimensional

anomaly cancellation requires T 16 to be an even, integral and self-dual lattice. In 16

dimensions, there are only 2 admissible choices, namely the root lattice of E8 ×E′
8 and the

weight lattice of Spin(32)/Z2. Here, we focus our attention on the latter case.

The representations of Spin(32) fall into 4 conjugacy classes, corresponding to the

adjoint, vector, spinor and conjugate spinor representation, respectively [18, 19]. Two

representations are said to be conjugate, if their weight vectors differ by an element of

the root lattice ΛR. Consequently, the weight lattice ΛW can be written as the sum of 4

disjoint sublattices, given by the highest weight of the respective representation modulo

ΛR. By Spin(32)/Z2 we shall understand the symmetry corresponding to the adjoint and

spinor conjugacy classes, and denote the respective lattice by ΛSpin(32)/Z2
.

The action of G on T 16 can be described as a shift XL 7→ XL + V [20], which induces

the transformations

σV (Hi) = Hi, σV (Eα) = exp (2πiα · V )Eα (2.2)

on the Cartan generators and step operators of SO(32), and these transformations clearly

describe an automorphism of the algebra.3 The automorphisms of semi-simple Lie algebras

have been classified [21], and it is straightforward to obtain the corresponding shifts, as we

will now describe.

Automorphisms of SO(32)

To this end, consider the extended Dynkin diagram of SO(32) given in figure 1. The num-

bers which have been adjoined to the nodes are the Kač labels ki, which are by definition

the expansion coefficients of the highest root αH in terms of the simple roots, i.e.

αH = k1α1 + . . . + k`α`, (2.3)

where ` is the rank4 of the algebra. For convenience, the Kač label of the most negative root

α0 ≡ −αH is set to k0 = 1. Then, by a theorem due to Kač [21], all order-N automorphisms

of an algebra up to conjugation are given by

σs,m(Eαj
) = µ exp (2πisj/N)Eαj

, j = 0, . . . , `, (2.4)

3Note that the group SO(32) and its covering group Spin(32) share the same algebra.
4Clearly, ` = 16 in our case, but for the time being, we want to keep the discussion general.
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where the sequence s = (s0, . . . , s`) may be chosen arbitrarily subject to the conditions

that the si are non-negative, relatively prime integers and

N = m
∑̀

i=0

kisi . (2.5)

Hereby, µ is an automorphism of the Dynkin diagram, and m is the smallest integer such

that (σs,m)m is inner. Since in this context we are only interested in inner automorphisms,

we set µ =
�

and m = 1. Furthermore, it should be noted that two automorphisms σs

and σs′ are conjugate if and only if the sequence s can be transformed into the sequence s′

by a symmetry of the extended diagram. In section 2.2, we will encounter an interesting

example which shows that two such automorphisms of SO(32) must not be identified.

The shift vector

To derive the shift vector corresponding to a given automorphism is now particularly easy.

Comparing eq. (2.2) to eq. (2.4), it immediately follows that

αi · V =
si

N
, i = 1, . . . , `, (2.6)

for the ` linearly independent roots αi. Expanding V in terms of the dual simple roots and

substituting this expression in the previous equation gives

V =
1

N
(s1α

∗
1 + . . . + s`α

∗
` ) , (2.7)

i.e. the integers si divided by the order N are the Dynkin labels of V . It is checked by a

direct calculation that this V also gives the correct transformation for the step operator

corresponding to the most negative root.

Determining the unbroken gauge group is now particularly simple. Looking at eq. (2.7)

we see that in the extended Dynkin diagram, the root αi (i = 0, . . . , `) is projected out, if

and only if the coefficient si in eq. (2.5) does not vanish. To calculate the spectrum of the

orbifold, we need an explicit expression for the shift vector V , which is easily obtained once

the simple roots and their duals are given. For a standard choice of roots, see e.g. ref. [18].

Restrictions on the shift vector

Not every shift vector V which describes an automorphism of the algebra is an admissi-

ble choice for model construction. For a twist θ ∈ P of order N, θN =
�

implies that

N V should act as the identity on T 16, and hence, from the self-duality of the lattice, it

immediately follows that

N V ∈ ΛSpin(32)/Z2
. (2.8)

By eq. (2.7), N V is only guaranteed to lie in the weight lattice ΛW , so that some of the

shift vectors will be ruled out.

For the partition function of a ZN orbifold to be modular invariant, the relation

N
(

V 2 − v2
)

= 0 mod 2 (2.9)
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has to be satisfied [20], where v is a 3-dimensional vector describing the action of the twist

on the complexified, compact coordinates. This condition severely restricts the number of

shift vectors which can be used in constructing orbifold models.

From eq. (2.8) it is clear that for a given order N of the twist θ, all shifts V of order

M are also admissible, as long as M divides N . In principle, we could determine the

admissible shifts for each M separately, but a more practical approach is to run through

the outlined procedure for N , dropping the condition on the relative-primeness of the

sequence s = (s0, . . . , s`), see the remarks preceding eq. (2.5). In the cases where s is not

relatively prime and the common divisor can be cancelled out from both the numerator

and the denominator in eq. (2.7), the order of the shift is some M which is smaller than N .

We will illustrate the outlined methods using the Z4 orbifold in section 2.2.

2.2 The Z4 orbifold

Classification

We shall use the method presented in section 2.1 to compute all admissible shifts for the

Z4 orbifold. For N = 4, there are 256 different vectors s = (s0, . . . , s16), which satisfy

eq. (2.5) with m=1 and the Kač labels ki given in figure 1. We express the corresponding

shift vectors using eq. (2.7) and a standard choice of roots[18]. Of these shift vectors,

134 satisfy the first restriction eq. (2.8) for admissible orbifold shifts and only 30 are left

when we impose the modular invariance requirement, given by eq. (2.9) with the twist

v = 1
4(1, 1, -2). Considering two shifts to be inequivalent if their spectra are different, we

find only 16 inequivalent shift vectors in the Z4 orbifold. These are all possible shifts one

can obtain.

Anomalies

The 16 inequivalent shift vectors, their corresponding gauge groups and spectra are listed in

table 4 of appendix A. We have denoted the anomalous U1 factors by U1A. As a cross-check

for our calculations, we have verified the following conditions for anomaly cancellation

1

24
Tr Qi =

1

6|ti|2
Tr Q3

i =
1

2
Tr lQi =

{

1
2|tj |2

Tr Q2
jQA 6= 0 if i = A, j 6= A

0 otherwise
(2.10)

where l denotes the index of a given representation. Furthermore, ti is the generator of the

i-th U1 factor that defines the charge Qi as:

Qi|psh〉L = (ti · psh)|psh〉L , (2.11)

where psh is the shifted Spin(32)/Z2 lattice vector. In the case when eq. (2.10) does not

vanish, these conditions guarantee that the anomalous U1 is cancelled by the generalized

Green-Schwarz mechanism [22 – 26], [15].
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Discussion of the results

A detailed list including the spectra of all Z4 orbifold models is given in table 4 of ap-

pendix A. In particular, in the second column of this table we compare our results to those

previously obtained in ref. [4]. In ref. [4] the shift vectors are separated into two classes.

The so-called vectorial shifts in the Z4 orbifold are those whose entries have a maximal

denominator of 4, whereas all entries of the spinorial shifts have a denominator of 8 and an

odd numerator. Using these definitions, 12 of our shifts are vectorial and 4 are spinorial.

Our result differs in some ways from that of the ref. [4]. Some multiplicities of states

and U(1) charges are different from our findings and cannot be related by a change of basis

in the U(1) directions. For the models in question, ref. [4] does not fulfill the anomaly

cancellation conditions, eq. (2.10).

Additionally, we find 16 inequivalent models whereas one can obtain only 10 inequiva-

lent shifts with the general method proposed in ref. [4]. This discrepancy is related to two

problems. One is that by using the ansatz for a spinorial shift proposed in ref. [4] and the

weight lattice as given in section 2.1, one cannot obtain any of the four spinorial shifts we

found in a direct manner for Z4. In appendix B we give an alternative ansatz for the form

of any shift of ZN orbifolds in the SO(32) heterotic string. Yet a classification based on

this ansatz is more time consuming than the method presented in section 2.1.

The second problem is that the shift vectors V(4) and V(12) of our vectorial shifts

are not listed in ref. [4]. Here, V(i) denotes the shift vector corresponding to the model

number i of table 4. The reason can be traced back to comparing, for instance, the shifts

V(3) and V(4) of our list. Since both shifts generate the same unbroken gauge group in

four dimensions and the same matter representations in the untwisted and second twisted

sectors, one might be tempted to consider them to be equivalent. But the matter content

of the first twisted sector is different, therefore, the two shifts lead to different models.

α0

α1

α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

α15

α16

(a) Breaking due to V(3)

α0

α1

α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

α15

α16

(b) Breaking due to V(4)

Figure 2: Extended Dynkin diagram of SO(32) corresponding to the breaking due to the shifts

V(3) and V(4) of the Z4 orbifold.
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We have deeper reasons to argue that these two shifts are inequivalent. First, as

illustrated in figure 2, the shift vectors come from two different breakings of the original

SO(32) gauge group in ten dimensions. Two different breakings may be equivalent if one can

transform the corresponding shifts into each other by adding lattice vectors and applying

automorphisms of the lattice. We can see that there is no lattice vector relating the shifts

V(3) and V(4). There exists an automorphism of SO(32), which maps V(3) onto V(4) up to a

lattice vector, compare figure 2. It is not an automorphism of Spin(32)/Z2, as it transforms

the spinor conjugacy class of the lattice of Spin(32)/Z2 into the conjugate-spinor class of

Spin(32), which is not part of Spin(32)/Z2.

In summary, this shows that the ansatz of ref. [4] is incomplete. It leads only to 10 of

the 16 shift vectors in the Z4 orbifold. As we shall show in section 4.1, one of the missing

shifts leads to a three-family model.

2.3 The ZN orbifold

Using the method described in section 2.1, we have computed all inequivalent models,

which we do not list due to space limitations. All ZN shifts, their corresponding gauge

groups and spectra are listed on our web page [8].

Lists of models

In summary, there are 5141 ZN orbifold models without Wilson lines. We have used the

geometry of ZN orbifolds as given in ref. [27], and for the Z8-I as given in ref. [28]. On our

web site [8], we provide for each model the following details:

• the twist v and the 6 dimensional root lattice, which specifies the geometry,

• the gauge shift V and the corresponding gauge group,

• the matter content, listed by sectors, including all U1 charges, where we have denoted

the anomalous one by U1A.5

For convenience, we have implemented a search engine, with which one can choose models

with a given gauge group. As a side remark, this work can be seen as a contribution to the

String Vacuum Project [29] in the context of the heterotic string [30].

Discussion of the results

In table 1 and table 2, we summarize our results. Our classification extends to SO(32) the

results of ref. [31] obtained in the context of E8 × E′
8 heterotic orbifolds. Comparing the

numbers of inequivalent SO(32) models to those presented in ref. [31], we find that there

are more inequivalent models in the SO(32) heterotic string for ZN orbifolds with N ≤ 7

and, conversely, the number of inequivalent models for orbifolds with N > 7 is larger in

the case of E8 × E′
8. This difference becomes important if Wilson lines are present, since

then one can interpret the action of the shift plus the associated Wilson line(s) locally

around every fixed point as a new shift. However, this new shift must be one of the set of

5More details are available from the authors upon request.
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# ineq. models in

ZN SO(32) E8 × E′
8

Z3 6 5

Z4 16 12

Z6-I 80 58

Z6-II 75 61

Z7 56 40

Z8-I 196 246

Z8-II 194 248

Z12-I 2295 3026

Z12-II 2223 3013

Table 1: Comparison between the number of inequivalent ZN orbifold models in the SO(32)

heterotic string and in the E8 × E′

8 heterotic string [31].

# models with # models with

ZN anomalous U1 16 of SO(10) 32 of SO(12)

Z3 5 0 0

Z4 12 2 0

Z6-I 76 4 4

Z6-II 65 10 3

Z7 55 2 0

Z8-I 193 12 0

Z8-II 166 11 7

Z12-I 2269 80 36

Z12-II 2097 116 10

Table 2: Numbers of inequivalent ZN orbifold models of the SO(32) heterotic string containing at

least one spinor of SO(10) or SO(12). Spinors of bigger groups do not appear in orbifold models of

the SO(32) heterotic string. We also present the number of models having an anomalous U1 factor

as part of the gauge group.

inequivalent shift vectors we have before Wilson lines are switched on6. In this sense, for

N ≤ 7 the SO(32) orbifolds lead to a richer variety of models.

In the second column of table 2 we present the number of models having an anomalous

U1. As explained in section 2.2, all U1 factors are consistent with the anomaly condi-

tions, eq. (2.10). Most of the orbifold models of the SO(32) heterotic string contain an

anomalous U1.

From the phenomenological point of view, the SO(32) heterotic string has been con-

sidered to be a less promising starting point than the E8 × E′
8 theory, one of the reasons

being that one did not expect spinor representations to be present in the spectrum. As

first shown by ref. [4], it is possible to obtain spinor representations in orbifold models of

the SO(32) heterotic string from the twisted sectors. In the third and fourth columns of

6For more information about the concept of fixed point equivalent models, see ref. [16].
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table 2, we list the number of models for each ZN orbifold in which there is at least one 16

spinor of SO(10) or one 32 spinor of SO(12), respectively. As we will explain in the next

section, the mass formula forbids the appearance of spinors of SO(14) or bigger groups in

orbifold models of the SO(32) heterotic string.

3. Spinors in SO(32) orbifold models

In the light of recent developments, SO(10) GUTs are attractive candidates for a theory

beyond the Standard Model [9 – 11]. In orbifold constructions, GUTs may be realized in

an intermediate picture [5, 32 – 35], keeping their successful predictions and avoiding the

problems, from which GUTs in 4 dimensions generically suffer. Therefore, we are naturally

led to look for orbifold models containing the spinor of SO(10). The SO(10) gauge group

can then be broken to the Standard Model gauge group by the inclusion of Wilson lines.

We investigate here the possibility of having the 16-dimensional spinor representation

of SO(10). In the standard basis, the simple roots of SO(10) can be written as

α1 = (1,−1, 0, 0, 0) α4 = (0, 0, 0, 1,−1)

α2 = (0, 1,−1, 0, 0) α5 = (0, 0, 0, 1, 1)

α3 = (0, 0, 1,−1, 0)

In this basis, the highest weight of the 16 is given by the 5-dimensional vector
(

1
2

5
)

.

This vector must be part of a 16-dimensional vector psh as follows

psh = p + mV =

(

1

2

5

, a1, a2, . . . , a11

)

, (3.1)

where p ∈ ΛSpin(32)/Z2
, V is a shift, m ∈ N is the number of the studied sector, and the

numbers ai are selected so that psh fulfills Npsh ∈ ΛSpin(32)/Z2
and the mass formula for

massless states

p2
sh = 2(1 − Ñ − δc), (3.2)

where δc is the shift of the zero point energy, and Ñ is the number operator, as explained in

ref. [5]. It is important to notice that there can be more than one combination of different

ai’s for which the resulting psh fulfills all the conditions.

The first consequence of the form of psh eq. (3.1) is that one cannot get the 16 of

SO(10) in the untwisted sector (m = 0), since it only consists of the roots of SO(32), which

can be expressed by the 480 vectors (±1, ±1, 014).

As a second consequence, one finds that it is not possible to get the 16 of SO(10) in the

Z3 orbifold. The first five entries of 3psh are half-integer and thus, since 3psh ∈ ΛSpin(32)/Z2
,

the remaining 11 entries must also be half-integer, i.e. 3ai ∈ Z + 1
2 . Assuming the smallest

value 3ai = 1
2 , it follows that p2

sh ≥ 5
4 + 11

36 = 14
9 . In the case of Ñ = 0, for any twisted

sector the right-hand side of eq. (3.2) is equal to 4
3 < 14

9 , which forbids the appearance of

psh in the spectrum of any Z3 orbifold model. This does not change for Ñ 6= 0 since the

value of the right-hand side of eq. (3.2) in this case is even smaller.

– 9 –
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In particular, one can easily find all shift vectors which produce SO(10) spinors in the

first twisted sector. From eq. (3.1), for all ZN orbifolds with N > 3 the shift(s) giving rise

to the 16 of SO(10) in the first twisted sector (m = 1) can be written simply as

V = psh − p
p=0
−→ psh, (3.3)

where we have chosen p = 0 because two shifts are equivalent if they differ by an arbitrary

lattice vector. This shift is automatically modular invariant.

Finding the highest weight of the 16 of SO(10) is a necessary condition for its existence

in the spectrum, but it is not sufficient to guarantee the presence of an SO(10) gauge group.

One also needs to compute the gauge group induced by eq. (3.3), which can be done by

simply using the patterns given in appendix B.

As an example, we consider the Z4 orbifold. The only possible shift consistent with

4V ∈ ΛSpin(32)/Z2
and eqs. (3.2) and (3.3) with δc = 5

16 is

V = psh =

(

(

1

2

)5

,

(

1

4

)2

, 09

)

. (3.4)

This shift is equivalent to V(5) of table 4 up to lattice vectors and Weyl reflections. One

can also verify that this shift provides indeed several copies of the 16 of SO(10) in the first

twisted sector.

It is phenomenologically attractive to have 16’s of SO(10) in the first twisted sector.

Since the 16-plets of the first twisted sector are localized in all six compact dimensions,

the inclusion of Wilson lines will break the gauge group and will reduce the degeneracy of

the fixed points, but it will not project out parts of a 16-plet. Therefore, models with this

feature can lead to potentially realistic string models.

An indirect method to obtain the 16 of SO(10) is to switch on Wilson lines in models

having spinor representations of bigger groups, like SO(12). In general, for SO(2n) groups,

the highest weight of the corresponding spinor is a solution of the eq. (3.2) of the form

psh = p + mV =

(

1

2

n

, a1, a2, . . . , a16−n

)

. (3.5)

By inspecting all possible values that δc and Ñ can take in the twisted sectors for all ZN

orbifolds, one can see that p2
sh = 2(1 − Ñ − δc) ≤ 31

18 in the mass equation (3.2). This

means that the spinor representation of SO(2n) for n ≥ 7 given by eq. (3.5) is not allowed,

because it is forbidden by the mass equation.

There are indeed some models with the 32 spinor representation of SO(12), as shown

in table 2. One might switch on Wilson lines on them in search of realistic models.

4. Three-family orbifold models

4.1 The Z4 orbifold

As our illustrative example, we consider the Z4 orbifold. One choice for the 6 dimensional

lattice [27] is the SO(5)2×SO(4) root lattice as shown in figure 3. The point group Z4 is

generated by θ which acts as a simultaneous rotation of 90◦ in two of the three 2-tori and

– 10 –
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e1

e2

e3

e4

(b) θ
2 twisted sector.

Figure 3: Twisted sectors of the Z4 orbifold.

a rotation of 180◦ in the third one; this corresponds to the twist vector

v =
1

4
(1, 1, −2) . (4.1)

Fixed point structure. On the torus, the action of θ1 has 2 × 2 × 4 = 16 fixed points,

see figure 3(a). The twisted sector corresponding to the action of θ3 gives the anti-particles

of the θ1 sector, so we will not consider it separately.

The element θ2 of the point group acts non-trivially only in two of the three complex

planes, see figure 3(b). Thus, the strings are localized only in 4 of the 6 compact dimensions

and are free to move in the last torus. For convenience, we shall refer to these fixed tori as

fixed points. Of the 4 × 4 = 16 fixed points of the θ2 sector, only

( ¥, ¥ ), ( ¥, • ), ( •, ¥ ), ( •, • )

are also invariant under the action of θ. The remaining 12 points are pairwise related by

θ and therefore form pairs

( ¥, N ) ↔ ( ¥, × ), ( N, ¥ ) ↔ ( ×, ¥ ), ( N, N ) ↔ ( ×, × ),

( N, • ) ↔ ( ×, • ), ( N, × ) ↔ ( ×, N ), ( •, N ) ↔ ( •, × ).

In this way, these 12 fixed points of the θ2 sector collapse to 6 by the action of the orbifold.

This leaves an effective number of 4 + 6 = 10 fixed points in the second twisted sector.

– 11 –
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Figure 4: Localization of the three generations with SU(5) gauge group. There are two families

in the bulk and one family localized in the origin. The boxes correspond to the degeneracy of the

fixed points without Wilson lines. This degeneracy has been lifted by the Wilson lines in the e2,

e4, e5 and e6 directions.

Wilson lines. Of the 16 Z4 models, none has 3 families of quarks and leptons. In order

to reduce the number of families and to further break the gauge symmetry, we need Wilson

lines [36]. The number and the order of Wilson lines one can add in a specific orbifold

model is dictated by the geometry of the underlying compactification. In our case, we can

have only 4 Wilson lines A2, A4, A5, and A6 of order 2 corresponding to the directions e2,

e4, e5, and e6, respectively.

Three-generation model. As a toy model, we present a 3-generation SU(5) model.

When considering the models presented in table 4, the shift vector V(14) seems quite promis-

ing. This model has an SU(5) gauge symmetry and, most importantly, the localization of

the generations gives some clues. There are two 10’s in the bulk and sixteen 10’s attached

to the fixed points of the first twisted sector. We focus our attention on the 10 because the

representation 5 generically come with the same multiplicity due to anomaly cancellation

in orbifold models. By a clever choice of the four Wilson lines, the degeneracy of the fixed

points can be lifted, so that the number of families is reduced from 16 in the twisted sectors

to 1, and both families of the untwisted sector survive, as depicted in figure 4:

A2 =

(

5

2

2

, 05,−
1

2

2

− 12, 3,−14

)

,

A4 =

(

−32, 05,−32,−2,−3,−
5

2
,

3

2
,−

5

2
,−2,

1

2

)

,

A5 =

(

1

2

2

, 05,
1

2

2

, 2,
3

2

3

, 2,
1

2
, 2

)

,

A6 =

(

3,
7

2
, 05,−1,−

5

2
,−2,−

5

2

6
)

.

The combined action of the shift and the Wilson lines leads to the gauge group

SU(5) × SU(2)5 × U(1)7, where the first U(1) is anomalous. The complete spectrum of

this model is given in table 3. The main objective of the present publication being the

clarification of some outstanding issues in the heterotic SO(32) theory, we will not explore

the phenomenology of this model in detail.
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U θ1 θ2 sum states

2 1 3 (10; 1, 1, 1, 1, 1)

3 5 8 ( 5; 1, 1, 1, 1, 1)

1 4 5 ( 5; 1, 1, 1, 1, 1)

10 37 4 51 ( 1; 1, 1, 1, 1, 1)

12 4 16 ( 1; 2, 1, 1, 1, 1)

12 4 16 ( 1; 1, 2, 1, 1, 1)

12 4 16 ( 1; 1, 1, 2, 1, 1)

12 4 16 ( 1; 1, 1, 1, 2, 1)

12 4 16 ( 1; 1, 1, 1, 1, 2)

Table 3: The spectrum of a Z4 toy model with 3 generations of SU(5).

We would like to stress three features of this model. To the best of our knowledge,

this is the first three-generation model in the context of the SO(32) orbifold published in

the literature. The shift V(14) that we used for this three-family model does not appear

in ref. [4]. This model shows clearly the possibility to compute promising models through

orbifolds of the SO(32) heterotic string.

4.2 Model in the Z6-II orbifold

In the Z6-II orbifold, one possible choice of the 6 dimensional lattice is G2×SU(3)×SO(4).

For further details on the geometry and the fixed point structure, see ref. [33]. Even without

the inclusion of Wilson lines, we find toy models with 3 generations. For instance, using

V (30) =

(

1

2

2

, −
1

6

5

, −
1

3

6

, −
1

2

3
)

of those Z6-II shifts listed on our web page [8], we obtain a model with 3 generations of

SO(10). Their localization is illustrated in figure 5.

The families are localized as follows: there are three 16’s of SO(10) in the second

twisted sector, whereas there are six 16’s in the fourth twisted sector. Since the families

are located in the second and fourth twisted sectors, where two of the six compactified

dimensions are left invariant by the orbifold action, the families are free to move in six

dimensions.

Even though this model is not realistic, it illustrates how easily one can obtain orbifold

models with three families in the context of the SO(32) heterotic string. Therefore, using

Wilson lines, potentially realistic models may be derived.

5. Conclusions and outlook

As we have seen, model building with the heterotic SO(32) theory might be as exciting as

that with its more famous brother: the E8 ×E′
8 string, see e.g. [37, 32 – 34, 38, 35, 39, 40].

It opens new roads for explicit constructions that should be explored as a vital part of the

string landscape.
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Figure 5: Localization of the 3 generations with SO(10) gauge group. There are 3 families in

the second twisted sector and 6 anti-families in the fourth twisted sector, giving a net number of 3

(anti-)families free to move in two of the six compactified dimensions. The box corresponds to the

degeneracy of the fixed points in the SU(3) 2-torus.

We were somewhat surprised about the frequency of the appearance of spinor represen-

tations of SO(2n) gauge groups. These spinors might be an important tool to implement

the family structure of SU(3) × SU(2) × U(1) models. In addition they are an important

ingredient for a possible understanding of the SO(32) heterotic type I duality in d = 4

space time dimensions. We know that these spinors do not appear in the perturbative

type I theory. Thus the mentioned duality will need the implementation of nonperturba-

tive effects.

Our classification of the ZN orbifolds of the SO(32) theory completes a basic building

block for further model constructions. We understand this as a contribution to the study of

the string landscape in the spirit of the “String Vacuum Project” [29]. A further step in this

program would be the implementation of Wilson lines that leads to enormous complexity

and a huge number of models (comparable to that of the E8×E′
8 string). An exploration of

this large region of the landscape is currently beyond our capabilities. We therefore gather

our present results and make them available to the public on our web page [8], such that

interested people could share our knowledge and contribute to the enterprise.
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A. Table of Z4 orbifold models

Ref. [4] Twisted matter

# Shift classification 4D gauge group Untwisted matter T1 T2

1
(

02, -1
2 , - 3

4

2
, 1, 010

)

n1 = 2, n2 = 1

Vectorial shift

SO26× SU2× U1A×U1 1(26,1)- 1

2
,- 1

2

+

1(26,1) 1

2
, 1
2

+

2(26,2)- 1

2
, 1

4

+

2(1,2)0,- 3

4

+2(1,2)1, 1

4

+

1(1,1)1,- 1

2

+ 1(1,1)-1, 1

2

16(26,1)- 1

2
,- 1

8

+

32(1,2)0,- 3

8

+

16(1,1)1,- 1

8

+

80(1,1)0, 3

8

10(26,1)- 1

2
, 1

4

+

6(26,1) 1

2
,- 1

4

+

32(1,2)0,0 +

10(1,1)0,- 3

4

+

10(1,1)1, 1

4

+

6(1,1)-1,- 1

4

+ 6(1,1)0, 3

4

2
(

02, - 1
2

2
, 1

2 , 1
4 , - 3

4 , 1, 08
)

n1 = 2, n2 = 3

Vectorial shift

SO22× SU4× SU2× U1 1(22,6,1)0 +

2(22,1,2) 1

4

+

2(1,6,2)- 1

4

+

1(1,1,1)- 1

2

+ 1(1,1,1) 1

2

16(1,4,2)- 1

8

+

32(1,4,1) 1

8

10(22,1,1)- 1

4

+

6(22,1,1) 1

4

+

10(1,6,1) 1

4

+

6(1,6,1)- 1

4

+32(1,1,2)0

3
(

02, -3
4

2
, 1

4

3
, 9

4 , -2, 07
)

n1 = 6, n2 = 0

Vectorial shift

SO20× SU6× U1A 2(20,6)- 1

2

+

1(1,15)1 + 1(1,15)-1

16(1,15) 1

4

+

80(1,1)- 3

4

10(1,15)- 1

2

+6(1,15) 1

2

+

10(1,1) 3

2

+ 6(1,1)- 3

2

4
(

02, -1
4 , - 3

4 , 1
4

3
, -3

4 , 1, 07
)

not classified

Vectorial shift

SO20× SU6× U1A 2(20,6)- 1

2

+

1(1,15)-1 + 1(1,15)1

16(20,1)- 3

4

+

32(1,6)- 1

4

10(1,15)- 1

2

+6(1,15) 1

2

+

10(1,1) 3

2

+ 6(1,1)- 3

2

5
(

02, -1
2

2
, 1

2

3
, 1

4 , 9
4 , -2, 06

)

n1 = 2, n2 = 5

Vectorial shift

SO18× SO10× SU2× U1A 1(18,10,1)0 +

2(18,1,2)- 1

2

+

2(1,10,2) 1

2

+

1(1,1,1)1 + 1(1,1,1)-1

16(1,16,1)- 1

4

10(18,1,1)- 1

2

+

6(18,1,1) 1

2

+

10(1,10,1) 1

2

+

6(1,10,1)- 1

2

+

32(1,1,2)0
Table 4: Continued...
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Ref. [4] Twisted matter

# Shift classification 4D gauge group Untwisted matter T1 T2

6
(

02, -1
2

2
, 1

4

5
, -3

4 , 1, 05
)

n1 = 6, n2 = 2

Vectorial shift

SO16× SU2
2× SU6× U1A 1(16,2,2,1)0 +

2(16,1,1,6)- 1

2

+

1(1,1,1,15)1 +

1(1,1,1,15)-1 +

2(1,2,2,6) 1

2

16(1,1,2,6)- 1

4

+

32(1,2,1,1)- 3

4

10(1,1,1,15) 1

2

+

6(1,1,1,15)- 1

2

+

10(1,1,1,1)- 3

2

+

6(1,1,1,1) 3

2

7
(

02, -1
2

4
, 1

2

3
, 1

4 , 5
4 , -1, 04

)

n1 = 2, n2 = 7

Vectorial shift

SO14× SO14× SU2× U1 1(14,14,1)0 +

2(14,1,2) 1

4

+

2(1,14,2)- 1

4

+

1(1,1,1)- 1

2

+ 1(1,1,1) 1

2

10(14,1,1)- 1

4

+

6(14,1,1) 1

4

+

10(1,14,1) 1

4

+

6(1,14,1)- 1

4

+

32(1,1,2)0

8
(

02, -1
2

4
, 1

4

5
, 9

4 , -2, 03
)

n1 = 6, n2 = 4

Vectorial shift

SO12× SO8× SU6× U1A 1(12,8,1)0 +

2(12,1,6)- 1

2

+

2(1,8,6) 1

2

+

1(1,1,15)1 +

1(1,1,15)-1

16(1,8,1)- 3

4

10(1,1,15)- 1

2

+

6(1,1,15) 1

2

+

10(1,1,1) 3

2

+

6(1,1,1)- 3

2

9
(

02, -1
2 , - 3

4 , 1
4

8
, 9

4 , -2, 02
)

n1 = 10, n2 = 1

Vectorial shift

SO10× SU10× U1A×U1 2(10,10)- 1

2
, 1
4

+

1(10,1)-1,- 5

4

+

1(10,1)1, 5

4

+

2(1,10)- 1

2
,- 3

2

+

2(1,10) 3

2
,1 +

1(1,45)1,- 1

2

+

1(1,45)-1, 1
2

16(1,10)- 5

4
,- 1

4

+

32(1,1)- 3

4
, 5

4

10(16,1)- 1

2
,- 5

8

+

6(16,1) 1

2
, 5

8

10
(

02, - 1
2

2
, 1

2 , 1
4

9
, 9

4 , 2
)

n1 = 10, n2 = 3

Vectorial shift

SU4× SU4× SU10× U1 1(6,6,1)0 +

2(6,1,10) 1

4

+

2(1,6,10)- 1

4

+

1(1,1,45)- 1

2

+

1(1,1,45) 1

2

16(4,1,1)- 5

8

+

16(1,4,1) 5

8

10(4,4,1)0 + 6(4,4,1)0

Table 4: Continued...
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Ref. [4] Twisted matter

# Shift classification 4D gauge group Untwisted matter T1 T2

11
(

1
2

2
, -1

4

12
, 3

4

2
)

n1 = 14, n2 = 0

Vectorial shift

SU2× SU2× SU14× U1 2(2,2,14) 1

4

+

1(1,1,91)- 1

2

+

1(1,1,91) 1

2

16(2,1,1)- 7

8

+

32(1,1,1) 7

8

10(1,2,14)- 1

4

+

32(2,1,1)0 +

6(1,2,14) 1

4

12
(

1
2

2
, 1

4 , -1
4

11
, 3

4

2
)

not classified

Vectorial shift

SU2× SU2× SU14× U1A 2(2,2,14)- 1

2

+

1(1,1,91)-1 +

1(1,1,91)1

16(2,1,1) 7

4

+

16(1,1,14)- 5

4

10(2,1,14)- 1

2

+

32(1,2,1)0 +

6(2,1,14) 1

2

13
(

- 1
8 , -7

8 , - 5
8 , 1

8

11
, 17

8

2
)

Spinorial shift SU15× U1A×U1 2 × 105-5, 3

2

+

2 × 157, 11
2

+ 152,7 +

15-2,-7

16 × 15-5,- 13

4

+ 80 × 1-3, 15

4

10 × 15-8, 1

2

+

10 × 16,- 15

2

+

6 × 158,- 1

2

+ 6 × 1-6, 15

2

14
(

-9
8 , 1

8 , - 13
8 , - 5

8

4
, -7

8

9
)

Spinorial shift SU11× SU5× U1A×U1 2(55,1)-3,- 5

2

+

2(11,5)1, 19

2

+

2(1,10)1,- 33

2

+

1(11,5)-2,7+1(11,5)2,-7

16(1,10)-2,- 11

4

+

32(1,1)-3, 55
4

10(11,1)-2,- 25

2

+

10(1,5)4, 11

2

+

6(11,1)2, 25

2

+

6(1,5)-4,- 11

2

15
(

- 1
8 , 1

8 , -5
8

4
, 3

8

5
, 1

8

5
)

Spinorial shift SU7× SU9× U1A×U1 2(21,1)3,- 3

2

+

2(7,9)-1, 5

2

+

2(1,36)-1,- 7

2

+

1(7,9)2,1 + 1(7,9)-2,-1

16(7,1)-3,- 3

4

+

16(1,1)3, 21

4

10(7,1)0,- 9

2

+

10(1,9)-2, 7

2

+

6(7,1)0, 9

2

+ 6(1,9)2,- 7

2

16
(

3
8 , 5

8 , - 1
8

12
, 15

8 , - 3
8

)

Spinorial shift SU3× SU13× U1A×U1 2(3,1)3,- 13

2

+

2(3,13)-1, 11

2

+

2(1,78)-1,- 9

2

+

1(3,13)2,-1+1(3,13)-2,1

16(1,1)2,- 39

4

+

16(1,13)-2, 9

4

+

32(3,1)-1,- 13

4

10(3,1)-2,- 13

2

+

10(1,13)0, 15

2

+

6(3,1)2, 13

2

+

6(1,13)0,- 15

2

Table 4: All admissible models for the Z4 orbifold of the SO(32) heterotic string without Wilson

lines. For each model, we list the shift vector, its classification according to ref. [4] and the matter

content displayed in sectors.
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B. The general form of a shift in ZN orbifolds of the SO(32) heterotic string

To obtain the general form of a shift, we use the fact that two shifts are equivalent if they

are related by lattice vectors or by Weyl reflections, i.e. by any permutation of the entries

and pairwise sign flips.

In ZN orbifolds with even N , one can prove that the most general form of a vectorial

shift is given by

V =
1

N

(

(±k)α ,−(N − k)β , 0n0 , 1n1 , . . . , (N − k)n(N−k)−α−β, . . . ,

(

N

2

)n(N
2 )

)

, (B.1)

where α, β, ni ∈ N, α + β ∈ {0, 1}, k ∈ {N
2 + 1, N

2 + 2, . . . , N} and
∑

ni = 16. It leads to

a symmetry breaking in four dimensions of the general form

SO(32) −→ SO(2n0) × U(n1) × · · · × U
(

n(N
2
−1)

)

× SO
(

2n(N
2 )

)

. (B.2)

On the other hand, for even N the spinorial shifts can be written in the standard form

V =
1

2N

(

(±k)α ,−(2N − k)β , 1n1 , 3n3 , . . . , (2N − k)n(2N−k)−α−β, . . . , (N − 1)n(N−1)

)

,

(B.3)

with k ∈ {N + 1, N + 3, . . . , 2N − 1}, which give rise to the gauge group

SO(32) −→ U(n1) × U(n3) × · · · × U
(

n(N−3)

)

× U
(

n(N−1)

)

. (B.4)

For N odd, the general form of both a vectorial shift and a spinorial one changes slightly.

As explained in ref. [4], in this case it is enough to determine either the vectorial or the

spinorial shifts, since one spinorial shift can always be transformed into a vectorial one by

the action of Weyl reflections and lattice vectors. Therefore any shift can be written in

general as

V =
1

N

(

(±k)α ,−(N − k)β, 0n0 , 1n1 , . . . , (N − k)n(N−k)−α−β, . . . ,

(

N − 1

2

)n
(N−1

2 )
)

,

(B.5)

where k ∈ {N+1
2 , N+3

2 , . . . , N}. The resulting four dimensional gauge group is

SO(32) −→ SO(2n0) × U(n1) × · · · × U
(

n(N−3
2 )

)

× U
(

n(N−1
2 )

)

. (B.6)
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